
Getting to Know Your Data
from Doing LVC with R*

Matt Hunt Gardner

2022-09-27

Table of contents
Getting to know the (t, d) deletion data . 1

Getting a Snapshot of the Data . 1
Types of Data . 5
Types of Data Structures . 6
Factors and Comments . 10

More Exploring . 11
The (t/d) Data . 12

Getting to know the (t, d) deletion data
If you followed the previous section you now have an object in R called td. If not, you can load it now
with either of the following codes.

td <- read.delim("https://www.dropbox.com/s/jxlfuogea3lx2pu/deletiondata.txt?dl=1")

td <- read.delim("Data/deletiondata.txt")

Getting a Snapshot of the Data
Now that you have some data loaded into R you can start exploring it. At any time you can type td into
the console window to see what that object actually represents. Try it.

td

To find out how many columns there are in your data frame (this is what R calls spreadsheets), use the
function nrow(). Similarly, to find out how many columns are in the data frame, use the function ncol().
The function dim() gives both.

nrow(td)

[1] 6989

ncol(td)

*https://lingmethodshub.github.io/content/R/lvc_r/

1

https://lingmethodshub.github.io/content/R/lvc_r/

Doing LVC with R: Getting to Know Your Data

[1] 12

dim(td)

[1] 6989 12
There are 6,989 rows and 12 columns in this data frame.
The summary() function is one of the most useful functions you’ll use in R. It gives you a quick snapshot of
a data frame.

summary(td)

Dep.Var Stress Category Morph.Type
Length:6989 Length:6989 Length:6989 Length:6989
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character

Before After Speaker YOB
Length:6989 Length:6989 Length:6989 Min. :1915
Class :character Class :character Class :character 1st Qu.:1952
Mode :character Mode :character Mode :character Median :1965

Mean :1967
3rd Qu.:1991
Max. :1999

Sex Education Job Phoneme.Dep.Var
Length:6989 Length:6989 Length:6989 Length:6989
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character

The summary() function shows you the name of all the columns in the data frame and what each column
contains.
When you import a data frame into R, R automatically decides what type of data each column contains.
Any data frame columns where all cells contain only numbers are assumed to numeric or integer data (de-
pending on if there are decimal values). Any columns that include letters will be assumed to be character
data.
For numeric or integer data (like YOB, or year of birth of the speakers in the td data), the summary()
function will tell you the mean, the median, the minimum value, the maximum value, and the values of the
first and third quartiles. The mean is the arithmetic mean, which is the sum of all the values in a column
divided by the number of values in a column. Fifty percent of the values in the column are equal to or less
than the mean and 50% of the values in the column are greater than or less than the mean. The mean can
also be thought of as the 2nd quartile. The median is exact middle point of the values in the column ordered
from smallest to largest. For normally distributed data, the mean and the median should be close to the same
value. Not all data, however, is normally distributed, which is sometimes a problem, and sometimes not a
problem. If a certain test expects numerical data to be normally distributed these instructions will explain
what to do, but for now, it’s just good to know what mean and median indicate. Twenty-five percent of
the values in the column are equal to or less than the 1st quartile and 75% of the values in the column are
equal to or less than the 3rd quartile. The minimum value is the lowest value in a column; the maximum
value is the highest number in a column. These values can be used to construct a box and whisker plot:

2 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

1920

1940

1960

1980

2000

Y
O

B

Figure 1: Box and whisker plot of YOB (Year of Birth) in the td data frame

The bottom whisker ends at the minimum value of 1910. The bottom line of the box displays the first
quartile value of 1952. The thick bar in the middle of the box is at the second quartile value/mean of
1965. The top line of the box ends at the third quartile value of 1991. The range from the first quartile
to the third quartile is called the interquartile range. The top whisker ends at the maximum value of
1999. Sometimes extremely high or extremely low values are more than 1.5× the interquartile range from
the top or bottom of the box. In these cases the whiskers will extend out to the last value within 1.5× the
interquartile range and anything beyond that will be an outlier and identified with a small circle, as in
Figure 2.
The function names() returns a vector (a series of items in a line, separated by commas) of the column
names. This function can be useful as a quick way to get the names of each column. You will need to use
these names quite often when writing other commands. colnames() returns the same information; ls()
returns the same information, but ordered alphabetically.

names(td)

[1] "Dep.Var" "Stress" "Category" "Morph.Type"
[5] "Before" "After" "Speaker" "YOB"
[9] "Sex" "Education" "Job" "Phoneme.Dep.Var"

colnames(td)

[1] "Dep.Var" "Stress" "Category" "Morph.Type"
[5] "Before" "After" "Speaker" "YOB"
[9] "Sex" "Education" "Job" "Phoneme.Dep.Var"

ls(td)

[1] "After" "Before" "Category" "Dep.Var"

3 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

50

100

150

200
To

ke
ns

Figure 2: Box and whisker plot of the number of tokens per speaker in the td data frame

[5] "Education" "Job" "Morph.Type" "Phoneme.Dep.Var"
[9] "Sex" "Speaker" "Stress" "YOB"

The function str() describes the structure of a data frame. It reports similar information as summary() but
does not include descriptions of each column; however, the layout of the information is sometimes a little
easier to read, especially if your data frame has many columns. Here we can see that YOB is categorized as
int (integer) data and all the other columns are chr (character) data.

str(td)

'data.frame': 6989 obs. of 12 variables:
$ Dep.Var : chr "Realized" "Realized" "Realized" "Deletion" ...
$ Stress : chr "Stressed" "Stressed" "Stressed" "Stressed" ...
$ Category : chr "Function" "Function" "Function" "Function" ...
$ Morph.Type : chr "Mono" "Mono" "Mono" "Mono" ...
$ Before : chr "Vowel" "Vowel" "Vowel" "Vowel" ...
$ After : chr "Pause" "Pause" "Pause" "Pause" ...
$ Speaker : chr "BOUF65" "CHIF55" "CLAF52" "CLAM73" ...
$ YOB : int 1965 1955 1952 1973 1915 1941 1953 1953 1958 1946 ...
$ Sex : chr "F" "F" "F" "M" ...
$ Education : chr "Educated" "Educated" "Educated" "Not Educated" ...
$ Job : chr "White" "White" "Service" "Blue" ...
$ Phoneme.Dep.Var: chr "t--Affricate" "t--Fricative" "t--Affricate" "t--Deletion" ...

head() will return the first six lines of the data frame. tail() provides the last six. For either you can
change the number of lines reported using the option n=.

head(td)

Dep.Var Stress Category Morph.Type Before After Speaker YOB Sex

4 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

1 Realized Stressed Function Mono Vowel Pause BOUF65 1965 F
2 Realized Stressed Function Mono Vowel Pause CHIF55 1955 F
3 Realized Stressed Function Mono Vowel Pause CLAF52 1952 F
4 Deletion Stressed Function Mono Vowel Pause CLAM73 1973 M
5 Realized Stressed Function Mono Vowel Pause DONF15 1915 F
6 Realized Stressed Function Mono Vowel Pause DONM41 1941 M

Education Job Phoneme.Dep.Var
1 Educated White t--Affricate
2 Educated White t--Fricative
3 Educated Service t--Affricate
4 Not Educated Blue t--Deletion
5 Not Educated Service t--Fricative
6 Not Educated Blue t--Fricative
The numbers on the left side of the output are the row number in the data frame.

tail(td, n = 10)

Dep.Var Stress Category Morph.Type Before After Speaker YOB Sex
6980 Realized Stressed Function Mono Vowel Vowel STEM42 1942 M
6981 Realized Stressed Function Mono Vowel Vowel VIKF91 1991 F
6982 Realized Stressed Function Mono Vowel Vowel VIKF91 1991 F
6983 Realized Stressed Lexical Mono Nasal Pause PACM94 1994 M
6984 Deletion Stressed Lexical Mono S Pause INGM84 1984 M
6985 Realized Stressed Lexical Mono S Vowel INGM84 1984 M
6986 Realized Stressed Function Mono Vowel Pause GARF16 1916 F
6987 Realized Stressed Lexical Mono Vowel Pause GARF87 1987 F
6988 Deletion Stressed Lexical Mono Vowel Pause GARF87 1987 F
6989 Realized Stressed Lexical Mono Vowel Pause GARF87 1987 F

Education Job Phoneme.Dep.Var
6980 Not Educated Service d--Glottal Stop
6981 Student Student d--Flap
6982 Student Student d--Flap
6983 Student Student d--T
6984 Educated Service t--Deletion
6985 Educated Service t--Glottal Stop
6986 Not Educated Service t--Fricative
6987 Educated White d--T
6988 Educated White d--Deletion
6989 Educated White d--D

Types of Data
There are other types of data beside numerical (like YOB in the td data) and character (like all other
columns in the td data).

Note

Character data is always enclosed in either single quotes ' ' or double quotes " ". It is common
practice to use single quotes for single characters and double quotes for strings, though either type of
quotation marks will work with either data type.
double is short for “double precision floating point numbers”. Don’t worry about the difference
between numeric and double, because it doesn’t really matter.

5 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

Table 1: Types of data in R

Data Type Description Example
logical either TRUE or FALSE The answer to a question like ”is x

a number?”, etc.
numeric any real number, positive or nega-

tive, with or without decimal val-
ues

Vowel formant measurements, posi-
tion in an audio file, household in-
come, etc.

double any real number, positive or nega-
tive, with or without decimal val-
ues (identical to numeric)

Vowel formant measurements, posi-
tion in an audio file, household in-
come, etc.

integer whole numbers and their negative
counterparts

year of birth, year of data col-
lection, number of occurrences of
something, etc.

complex data that includes imaginary or un-
known elements

the pythagorian theroem, i.e., 𝑎2 +
𝑏2 = 𝑐2, where 𝑎, 𝑏, and 𝑐 are un-
known

character single characters (like 'F') or
strings (like "female")

gender, speaker name, etc.

raw raw bytes Anything expressed in bytes

It is uncommon to use raw data in sociolinguistics. Anything can be expressed in bytes. There are two
functions to convert from characters to bytes, and bytes to characters. To go from characters to bytes:

raw_variable <- charToRaw("Sociolinguistics is fun")
print(raw_variable)

[1] 53 6f 63 69 6f 6c 69 6e 67 75 69 73 74 69 63 73 20 69 73 20 66 75 6e

print(class(raw_variable))

[1] "raw"
Above the function charToRaw() converts the string "Sociolinguistics is fun" to bytes and assigns that
raw data to the object raw_variable. Next the print() function displays in R the contents of the variable
raw_variable. The class() function returns the type of data contained within a variable. To convert back
to characters:

char_variable <- rawToChar(raw_variable)
print(char_variable)

[1] "Sociolinguistics is fun"

print(class(char_variable))

[1] "character"

Types of Data Structures
A vector and a list are the most basic types of data structures. A vector is a collection of elements, most
commonly a collection of character, logical, integer, or numeric values. Values can be combined into
a vector using the concatenating function c()

6 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

simple.vector <- c("Labov", "Fishman")
print(simple.vector)

[1] "Labov" "Fishman"
We can explore the vector using some of the same functions we’ve already seen.

length(simple.vector)

[1] 2

class(simple.vector)

[1] "character"

str(simple.vector)

chr [1:2] "Labov" "Fishman"
Lists are like vectors but can contain a mixture of different data types. Characters must be in quotation
marks. Numbers in quotation marks will be categorized as characters. Numeric data is numbers without
quotation marks. Integers are specificed by adding L after the number. Logical values are either TRUE or
FALSE in all capital letters.

simple.list <- list("Labov", "Fishman", "2001", 1963,
1.5, 1974L, TRUE)

print(simple.list)

[[1]]
[1] "Labov"

[[2]]
[1] "Fishman"

[[3]]
[1] "2001"

[[4]]
[1] 1963

[[5]]
[1] 1.5

[[6]]
[1] 1974

[[7]]
[1] TRUE

length(simple.list)

[1] 7

7 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

class(simple.list)

[1] "list"

str(simple.list)

List of 7
$: chr "Labov"
$: chr "Fishman"
$: chr "2001"
$: num 1963
$: num 1.5
$: int 1974
$: logi TRUE

You will notice that the results of the str() function show that Labov, Fishman and 2001 are all categorized
as chr (character); 1963 and 1.5 are categorized as num (numeric); 1974 is categorized as int (integer);
and TRUE is categorized as logi (logical).
Lists can be bigger than just one group of data. Items in a list can also be more complex than a single value.

complex.list <- list(a = "John Baugh", b = simple.vector,
c = simple.list, d = head(td))

print(complex.list)

$a
[1] "John Baugh"

$b
[1] "Labov" "Fishman"

$c
$c[[1]]
[1] "Labov"

$c[[2]]
[1] "Fishman"

$c[[3]]
[1] "2001"

$c[[4]]
[1] 1963

$c[[5]]
[1] 1.5

$c[[6]]
[1] 1974

$c[[7]]
[1] TRUE

8 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

$d
Dep.Var Stress Category Morph.Type Before After Speaker YOB Sex

1 Realized Stressed Function Mono Vowel Pause BOUF65 1965 F
2 Realized Stressed Function Mono Vowel Pause CHIF55 1955 F
3 Realized Stressed Function Mono Vowel Pause CLAF52 1952 F
4 Deletion Stressed Function Mono Vowel Pause CLAM73 1973 M
5 Realized Stressed Function Mono Vowel Pause DONF15 1915 F
6 Realized Stressed Function Mono Vowel Pause DONM41 1941 M

Education Job Phoneme.Dep.Var
1 Educated White t--Affricate
2 Educated White t--Fricative
3 Educated Service t--Affricate
4 Not Educated Blue t--Deletion
5 Not Educated Service t--Fricative
6 Not Educated Blue t--Fricative

str(complex.list)

List of 4
$ a: chr "John Baugh"
$ b: chr [1:2] "Labov" "Fishman"
$ c:List of 7
..$: chr "Labov"
..$: chr "Fishman"
..$: chr "2001"
..$: num 1963
..$: num 1.5
..$: int 1974
..$: logi TRUE

$ d:'data.frame': 6 obs. of 12 variables:
..$ Dep.Var : chr [1:6] "Realized" "Realized" "Realized" "Deletion" ...
..$ Stress : chr [1:6] "Stressed" "Stressed" "Stressed" "Stressed" ...
..$ Category : chr [1:6] "Function" "Function" "Function" "Function" ...
..$ Morph.Type : chr [1:6] "Mono" "Mono" "Mono" "Mono" ...
..$ Before : chr [1:6] "Vowel" "Vowel" "Vowel" "Vowel" ...
..$ After : chr [1:6] "Pause" "Pause" "Pause" "Pause" ...
..$ Speaker : chr [1:6] "BOUF65" "CHIF55" "CLAF52" "CLAM73" ...
..$ YOB : int [1:6] 1965 1955 1952 1973 1915 1941
..$ Sex : chr [1:6] "F" "F" "F" "M" ...
..$ Education : chr [1:6] "Educated" "Educated" "Educated" "Not Educated" ...
..$ Job : chr [1:6] "White" "White" "Service" "Blue" ...
..$ Phoneme.Dep.Var: chr [1:6] "t--Affricate" "t--Fricative" "t--Affricate" "t--Deletion" ...

In the list complex.list column a contains only one value: John Baugh. Column b contains our
simple.vector, column c contains our simple.list, and column d includes the first six rows of the td
data (which itself has columns). To access the values from columns within columns you can use multiple
$ operators.

print(complex.list$a)

[1] "John Baugh"

print(complex.list$d)

9 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

Dep.Var Stress Category Morph.Type Before After Speaker YOB Sex
1 Realized Stressed Function Mono Vowel Pause BOUF65 1965 F
2 Realized Stressed Function Mono Vowel Pause CHIF55 1955 F
3 Realized Stressed Function Mono Vowel Pause CLAF52 1952 F
4 Deletion Stressed Function Mono Vowel Pause CLAM73 1973 M
5 Realized Stressed Function Mono Vowel Pause DONF15 1915 F
6 Realized Stressed Function Mono Vowel Pause DONM41 1941 M

Education Job Phoneme.Dep.Var
1 Educated White t--Affricate
2 Educated White t--Fricative
3 Educated Service t--Affricate
4 Not Educated Blue t--Deletion
5 Not Educated Service t--Fricative
6 Not Educated Blue t--Fricative

print(complex.listdJob)

[1] "White" "White" "Service" "Blue" "Service" "Blue"
Generally, in LVC analysis we do not deal often with either simple vectors or lists; instead, most of our data
is in a spreadsheet-like format, which in R is a data frame.
Data frames are a special type of list in which every element in the list has the same length (unlike, for
example, the complex.list above). Data frames can have additional annotations, like rownames(). Some
statisticians use rownames() for things like participantID, sampleID, or some other unique identifier.
Most of the time (and for our purposes), rownames() are not useful given that we have multiple rows from
the same speaker/interview, etc.

Factors and Comments
A factor in R is a special type of variable or data type that, in theory, has a limited number of values. Each
value is called a level. Any vector or data frame column of character or integer values can be a factor.
Most non-numerical data in LVC is generally thought of as a factor already, so knowing how to convert
vectors or data frame columns to factors is important. For example, in the td data, the column Stress
contains only two options: Stressed and Unstressed. Because this column contains letters, when we
imported it into R, it was automatically categorized as character data. This is probably the best option
for a column that, for example, contained the broader context of a token. For Stress, however, it is better
for our purposes for R to consider the column as containing a factor with two discrete levels. Below is the
code to convert Stress into a factor.

Determine the class of the column Stress in the
date frame td
class(td$Stress)

[1] "character"

Convert Stress to a column to a factor
td$Stress <- factor(td$Stress)
Verify class of Stress column
class(td$Stress)

[1] "factor"
Notice the comments in the code above. In R any line that begins with a # is not evaluated. This is called
commenting out a line. We use # to include notes in our codes, or to keep code in our script file but have R

10 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

ignore it. This can be useful in order to keep track of the steps you are taking in an analysis (see also this
tutorial1 on organizing code using #)
Columns within a data frame can be specified using the $ operator So, above, we tell R to assign (using
the assignment operator <-) the values of the original td$Stress column, converted into factors, back to
the column td$Stress. In other words, we are replacing the original column td$Stress with a converted
version of itself. Now, look how the output of the summary() function changes.

summary(td)

Dep.Var Stress Category Morph.Type
Length:6989 Stressed :6555 Length:6989 Length:6989
Class :character Unstressed: 434 Class :character Class :character
Mode :character Mode :character Mode :character

Before After Speaker YOB
Length:6989 Length:6989 Length:6989 Min. :1915
Class :character Class :character Class :character 1st Qu.:1952
Mode :character Mode :character Mode :character Median :1965

Mean :1967
3rd Qu.:1991
Max. :1999

Sex Education Job Phoneme.Dep.Var
Length:6989 Length:6989 Length:6989 Length:6989
Class :character Class :character Class :character Class :character
Mode :character Mode :character Mode :character Mode :character

We get the number of observations of each level of td$Stress instead of just the number of rows (i.e. the
length of the column).
To get the levels of a factor we can use the function levels() and to get the number of levels, we can use
the function nlevels()

levels(td$Stress)

[1] "Stressed" "Unstressed"

nlevels(td$Stress)

[1] 2

More Exploring
If you only want information from a single column of the data frame, you can use the operator $ to specify
which column of td you want. Here the column ‘Sex’ is specified.

summary(td$Sex)

1https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections-in-the-RStudio-IDE

11 ©Matt Hunt Gardner

https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections-in-the-RStudio-IDE

Doing LVC with R: Getting to Know Your Data

Length Class Mode
6989 character character

levels(td$Sex)

NULL
The Sex column is still categorized as character data and so summary() only return the number of rows
(length) of the column and there are no levels. To get the information we want about the Sex column (i.e.,
how many tokens are from male speakers and how many are from women speakers) we need to convert it
to a factor first. We can either convert the the column to a factor column, or we can use the as.factor()
function to have R treat is as a factor in just the following code.

summary(as.factor(td$Sex))

F M
3776 3213

levels(as.factor(td$Sex))

[1] "F" "M"
The following code changes all the character class columns to factors.

Start with a fresh import of the (t, d) data
into R, downloading it directly
td <- read.delim("https://www.dropbox.com/s/jxlfuogea3lx2pu/deletiondata.txt?dl=1")

or using the version saved locally in a folder
Data in the same location as your script file
td <- read.delim("Data/deletiondata.txt")

Now convert each character column into a factor
td$Dep.Var <- factor(td$Dep.Var)
td$Stress <- factor(td$Stress)
td$Category <- factor(td$Category)
td$Morph.Type <- factor(td$Morph.Type)
td$Before <- factor(td$Before)
td$After <- factor(td$After)
td$Speaker <- factor(td$Speaker)
td$Sex <- factor(td$Sex)
td$Education <- factor(td$Education)
td$Job <- factor(td$Job)
td$Phoneme.Dep.Var <- factor(td$Phoneme.Dep.Var)

The (t/d) Data
Let’s look at the data now that all the character columns are factors.

summary(td)

Dep.Var Stress Category Morph.Type
Deletion:1747 Stressed :6555 Function: 739 Mono :5236

12 ©Matt Hunt Gardner

Doing LVC with R: Getting to Know Your Data

Realized:5242 Unstressed: 434 Lexical :6250 Past : 782
Semi-Weak: 971

Before After Speaker YOB Sex
Liquid : 269 Consonant: 709 GARF87 : 224 Min. :1915 F:3776
Nasal : 209 H : 246 INGM84 : 212 1st Qu.:1952 M:3213
Other Fricative: 130 Pause :5248 MARM92 : 176 Median :1965
S : 332 Vowel : 786 HANF83 : 139 Mean :1967
Stop : 249 CHIF55 : 135 3rd Qu.:1991
Vowel :5800 GARF16 : 132 Max. :1999

(Other):5971
Education Job Phoneme.Dep.Var

Educated :3006 Blue :1068 t--Deletion : 981
Not Educated:2184 Service:2895 t--Fricative: 973
Student :1799 Student:1799 t--T : 830

White :1227 d--Deletion : 766
t--Affricate: 667
d--T : 583
(Other) :2189

As shown by the summary(td) results above, the first column in the (t, d) deletion data is called Dep.Var and
it includes two levels: Realized and Deletion. These two levels represent the two options for each token
of (t, d). The values after each level are how many rows are coded with that level. In other words, there are
1,747 rows (or tokens) of Deletion and there are 5,242 rows (or tokens) of Realized. Notice that the order
of the factor levels is alphabetical. There is a column labelled Stress which indicates if the (t, d) token is
in a stressed or unstressed syllable. The Category column indicates if the word in which the (t, d) token
appears is a function or lexical word. Morph.Type indicates if the (t, d) occurs in a monomorpheme (like
fist), a semi-weak simple past-tense verb (like dealt) in which there is a vowel change and a (t,d) sound
is added, or a weak simple past-tense verb (like walked) in which just /-ed/ is added. Before indicates
the type of sound preceding the (t, d) and After indicates the sound following the (t, d). Speaker is a
unique identifier for each participant in the data (only the first six are displayed, though); YOB indicates
the speaker’s year of birth, Sex his or her sex2, Education his or her education level, and Job his or her
job type. Finally, Phoneme.Dep.Var indicates the canonical underlying phoneme of the (t, d) token and a
more detailed coding of the dependent variable.

2These were the only two sex/gender identities reported by speakers in this data.

13 ©Matt Hunt Gardner

	Getting to know the (t, d) deletion data
	Getting a Snapshot of the Data
	Types of Data
	Types of Data Structures
	Factors and Comments

	More Exploring
	The (t/d) Data

