
Doing it all again, but tidy
from Doing LVC with R*

Matt Hunt Gardner

2022-09-27

Table of contents
Doing It All Again, But tidy . 1

The Pipe %>% . 2
Tibbles . 2
Getting a glimpse() . 3
Manipulating data with dplyr . 4

Doing It All Again, But tidy
The package dplyr is part of a larger “universe” of R packages called tidyverse. This collection of packages
is specifically focused on data science and offers some shortcuts that are useful to learn. The packages that
make up the tidyverse are dplyr, ggplot2, purr, tibble, tidyr, stingr, readr, and forcats, among
others. Throughout this guide I try to use the most basic R syntax for accomplishing a task. This way you
learn how R works. I will also show how to complete the same task using packages from the tidyverse.
Using the tidyverse methods is usually optional — though once you get the hang of it, you might always
use the tidyverse methods.

Install the tidyverse package
install.packages("tidyverse")

Load the tidyverse package
library(tidyverse)

List the packages loaded by the tidyverse
package
tidyverse_packages()

[1] "broom" "cli" "crayon" "dbplyr"
[5] "dplyr" "dtplyr" "forcats" "ggplot2"
[9] "googledrive" "googlesheets4" "haven" "hms"

[13] "httr" "jsonlite" "lubridate" "magrittr"
[17] "modelr" "pillar" "purrr" "readr"
[21] "readxl" "reprex" "rlang" "rstudioapi"
[25] "rvest" "stringr" "tibble" "tidyr"
[29] "xml2" "tidyverse"

*https://lingmethodshub.github.io/content/R/lvc_r/

1

https://lingmethodshub.github.io/content/R/lvc_r/

Doing LVC with R: Doing it all again, but tidy

Before we get started with the tidyverse, there are two important new things to learn about. The first is
the pipe operator %>% and the second is the the alternative to a data frame called a tibble.

The Pipe %>%
The pipe operator %>%1 is introduced by the magrittr package2 and it is extremely useful. The pipe operator
passes the output of a function to the first argument of the next function, which mean you can chain several
steps together.
For example, lets find the mean year of birth in our data. We already know that when the pre-vowel
contexts are removed, the mean year of birth is 1969.

Get the data first

If you don’t have the td data loaded in R, go back to Getting Your Data into Ra and run the code.
ahttps://lingmethodshub.github.io/content/R/lvc_r/020_lvcr.html

Find mean YOB using mean() function
mean(td$YOB)

[1] 1969.447

Find the mean YOB by piping the td data to the
mean() function
td$YOB %>%

mean()

[1] 1969.447
The functionality of %>%might seem trivial at this point; however, when you need to perform multiple tasks
sequentially, it saves a lot of time and space when writing your code.

Tibbles
A tibble is an updated version of a data frame. Tibbles keep the features that have stood the test of time,
and drop the features that used to be convenient but are now frustrating (i.e. converting character vectors
to factors). For our purposes, the difference between the two is negligible, but you should be aware that
tibbles look a bit different from data frames. Run these two commands and compare.

as.data.frame(td)

as_tibble(td)

Notice that the tibble lists the dimensions of the tibble at the top, as well as the class of each of the columns.
It also only displays the first 10 rows. You’ll also notice that the row numbers have reset when we converted
td to a tibble. If we want to view the entire tibble, we can use the print() function and specify the n= plus
the number of rows we want to see, including all rows (n=Inf). You can see below how the pipe operator
makes doing this pretty easy.

1Not to be confused with the operator |, which means “or” and whose symbol is also called “pipe”.
2Loading dplyr will also let you use it.

2 ©Matt Hunt Gardner

https://lingmethodshub.github.io/content/R/lvc_r/020_lvcr.html

Doing LVC with R: Doing it all again, but tidy

Embedding functions
print(as_tibble(td), n = 20)

The above produces the same as the following:

Using %>% to pass the results from the first
function to the second function
as_tibble(td) %>%

print(n = 20)

A tibble: 1,189 x 17
Dep.Var Stress Category Morph.Type Before After Speaker YOB Sex Education Job After.New Center.Age Age.Group Age_Sex Phoneme Dep.Var.Full
<chr> <chr> <chr> <chr> <fct> <chr> <chr> <int> <chr> <chr> <chr> <fct> <dbl> <fct> <fct> <fct> <fct>

1 Realized Stressed Lexical Mono Stop Consonant BOUF65 1965 F Educated White Consonant -4.45 Middle Middle_F t T
2 Deletion Stressed Lexical Mono Stop Consonant CHIF55 1955 F Educated White Consonant -14.4 Middle Middle_F t Deletion
3 Deletion Stressed Lexical Mono Stop Consonant CHIF55 1955 F Educated White Consonant -14.4 Middle Middle_F t Deletion
4 Deletion Stressed Lexical Mono Stop Consonant CLAF52 1952 F Educated Service Consonant -17.4 Middle Middle_F t Deletion
5 Realized Stressed Lexical Mono Stop Consonant DONM53 1953 M Educated Service Consonant -16.4 Middle Middle_M t T
6 Deletion Stressed Lexical Mono Stop Consonant DONM58 1958 M Not Educated Service Consonant -11.4 Middle Middle_M t Deletion
7 Deletion Stressed Lexical Mono Stop Consonant DOUF46 1946 F Educated Service Consonant -23.4 Middle Middle_F t Deletion
8 Deletion Stressed Lexical Mono Stop Consonant GARM42 1942 M Not Educated Blue Consonant -27.4 Old Old_M t Deletion
9 Deletion Stressed Lexical Mono Stop Consonant GREM45 1945 M Not Educated Blue Consonant -24.4 Middle Middle_M t Deletion
10 Deletion Stressed Lexical Mono Stop Consonant HOLF49 1949 F Educated Service Consonant -20.4 Middle Middle_F t Deletion
11 Deletion Stressed Lexical Mono Stop Consonant HOLM52 1952 M Not Educated Blue Consonant -17.4 Middle Middle_M t Deletion
12 Deletion Stressed Lexical Mono Stop Consonant INGM84 1984 M Educated Service Consonant 14.6 Young Young_M t Deletion
13 Deletion Stressed Lexical Mono Stop Consonant INGM87 1987 M Educated Service Consonant 17.6 Young Young_M t Deletion
14 Deletion Stressed Lexical Mono Stop Consonant KAYF29 1929 F Not Educated Service Consonant -40.4 Old Old_F t Deletion
15 Deletion Stressed Lexical Mono Stop Consonant KAYM29 1929 M Not Educated Blue Consonant -40.4 Old Old_M t Deletion
16 Realized Stressed Lexical Mono Stop Consonant LATF53 1953 F Educated Service Consonant -16.4 Middle Middle_F t T
17 Realized Stressed Lexical Mono Stop Consonant LEOF66 1966 F Educated White Consonant -3.45 Middle Middle_F t T
18 Deletion Stressed Lexical Mono Stop Consonant MOFM55 1955 M Educated White Consonant -14.4 Middle Middle_M t Deletion
19 Deletion Stressed Lexical Mono Stop Consonant NATF84 1984 F Educated Service Consonant 14.6 Young Young_F t Deletion
20 Deletion Stressed Lexical Mono Stop Consonant NEIF49 1949 F Educated Service Consonant -20.4 Middle Middle_F t Deletion
... with 1,169 more rows
i Use `print(n = ...)` to see more rows

Getting a glimpse()

Another useful addition to data exploration is the glimpse() function from the pilllar package and re-
exported by dplyr. The glipmpse() function is like a cross between print() (which shows the data) and
str() (which shows the structure of the data). I use glimpse() almost as frequently as I use summary().
In fact, if you have very wide data, i.e., with lots of columns, glimpse() may prove more useful than
summary() for getting a quick snapshot of your data. glimpse() shows the number of rows, the number
of columns, the name of each column, its class, and however many values in each column as will fit
horizontally in the console.

glimpse(td)

Rows: 1,189
Columns: 17
$ Dep.Var <chr> "Realized", "Deletion", "Deletion", "Deletion", "Realized~
$ Stress <chr> "Stressed", "Stressed", "Stressed", "Stressed", "Stressed~
$ Category <chr> "Lexical", "Lexical", "Lexical", "Lexical", "Lexical", "L~

3 ©Matt Hunt Gardner

Doing LVC with R: Doing it all again, but tidy

$ Morph.Type <chr> "Mono", "Mono", "Mono", "Mono", "Mono", "Mono", "Mono", "~
$ Before <fct> Stop, Stop, Stop, Stop, Stop, Stop, Stop, Stop, Stop, Sto~
$ After <chr> "Consonant", "Consonant", "Consonant", "Consonant", "Cons~
$ Speaker <chr> "BOUF65", "CHIF55", "CHIF55", "CLAF52", "DONM53", "DONM58~
$ YOB <int> 1965, 1955, 1955, 1952, 1953, 1958, 1946, 1942, 1945, 194~
$ Sex <chr> "F", "F", "F", "F", "M", "M", "F", "M", "M", "F", "M", "M~
$ Education <chr> "Educated", "Educated", "Educated", "Educated", "Educated~
$ Job <chr> "White", "White", "White", "Service", "Service", "Service~
$ After.New <fct> Consonant, Consonant, Consonant, Consonant, Consonant, Co~
$ Center.Age <dbl> -4.446594, -14.446594, -14.446594, -17.446594, -16.446594~
$ Age.Group <fct> Middle, Middle, Middle, Middle, Middle, Middle, Middle, O~
$ Age_Sex <fct> Middle_F, Middle_F, Middle_F, Middle_F, Middle_M, Middle_~
$ Phoneme <fct> t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, t, ~
$ Dep.Var.Full <fct> T, Deletion, Deletion, Deletion, T, Deletion, Deletion, D~

Manipulating data with dplyr

The dplyr package is great for manipulating data in a data frame/tibble. Some common things that diplyr
can do include:

Function Description
mutate() add new variables or modify existing ones
select() select variables
filter() filter
summarize() summarize/reduce
arrange() sort
group_by() group
rename() rename columns

Lets redo all our data manipulation of td but with dplyr and its pipe %>% operator

Read in token file
td <- read.delim("Data/deletiondata.txt")

or…

Read in token file
td <- read.delim("https://www.dropbox.com/s/jxlfuogea3lx2pu/deletiondata.txt?dl=1")

then…

Subset data to remove previous 'Vowel'
contexts: filter td to include everything that
is not 'Vowel' in the column Before
td <- td %>%

filter(Before != "Vowel")

Re-code 'H' to be 'Consonant' in a new column:
create a new column called After.New that
equals a re-code of After in which H is
re-coded as Consonant
td <- td %>%

4 ©Matt Hunt Gardner

Doing LVC with R: Doing it all again, but tidy

mutate(After.New = recode(After, H = "Consonant"))

Center Year of Birth: create a new column
called Center.Age equal to the YOB column but
scaled
td <- td %>%

mutate(Center.Age = as.numeric(scale(YOB, scale = FALSE)))

Create Age.Group: cut YOB into discrete
categories.
td <- td %>%

mutate(Age.Group = cut(YOB, breaks = c(-Inf, 1944,
1979, Inf), labels = c("Old", "Middle", "Young")))

Before we continue, a note about the cut() function. The breaks= option is a concatenated list of bound-
aries. It should start and end with -Inf and Inf (negative and positive infinity) as these will be the lower
and upper bounds. The other values are the boundaries or cut-off points. By default cut() has the setting
right=TRUE, which means the boundary values are considered the last value in a group (e.g., rightmost
value). Above, this means 1944 will be the highest value in the Old category and 1979 will the the highest
value in the Middle category. To reverse this you can add the option right=FALSE in which case 1944
would be the lowest value in the Middle category (e.g. leftmost value) and 1979 would be the lowest value
in the Young category.
Let’s continue.

Combine Age and Sex: use the unite() function
from the tidyr package, if remove=TRUE the
original Age.Group and Sex columns will be
deleted
td <- td %>%

unite("Age_Sex", c(Age.Group, Sex), sep = "_",
remove = FALSE)

Break Phoneme.Dep.Var into two columns: same as
before, but with td passed to mutate() by the
%>% operator
td <- td %>%

mutate(Phoneme = sub("^(.)(--.*)$", "\\1", Phoneme.Dep.Var),
Dep.Var.Full = sub("^(.--)(.*)$", "\\2", Phoneme.Dep.Var),
Phoneme.Dep.Var = NULL)

At this point we have done everything except partition the data and re-center YOB in the partitioned data
frames. You may ask, “How is this better?”. Well, the answer is that because all these modifications feed
into one another, we can actually include them all together in one serialized operation. Behold!
All of the above code can be simplified as follows:
or…

Read in token file
td <- read.delim("https://www.dropbox.com/s/jxlfuogea3lx2pu/deletiondata.txt?dl=1")

then…

5 ©Matt Hunt Gardner

Doing LVC with R: Doing it all again, but tidy

Subset data to remove previous 'Vowel' contexts,
then modify several columns with mutate,
then convert any character column to a factor column
td <- td %>%

filter(Before != "Vowel")%>%
mutate(

After.New = recode(After, "H" = "Consonant"),
Center.Age = as.numeric(scale(YOB, scale = FALSE)),
Age.Group = cut(YOB, breaks = c(-Inf, 1944, 1979, Inf),

labels = c("Old", "Middle", "Young")),
Phoneme = sub("^(.)(--.*)$", "\\1", Phoneme.Dep.Var),
Dep.Var.Full = sub("^(.--)(.*)$", "\\2", Phoneme.Dep.Var),
Phoneme.Dep.Var = NULL
)%>%

mutate_if(is.character, as.factor)

Now, doesn’t the above look so much cleaner and easier to follow? You’ll notice that after some lines there
is a #. This an optional way to signal the end of a line of code when your code is broken over more than one
line. Above, the mutate() function could have been written in one single continuous line, but breaking it
up over multiple lines makes seeing each mutation much easier.
To partition the data we still need separate functions. Also, remember to re-centre any continuous variables
after partioning.

td.young <- td %>%
filter(Age.Group == "Young") %>%
mutate(Center.Age = as.numeric(scale(YOB, scale = FALSE)))

td.middle <- td %>%
filter(Age.Group == "Middle") %>%
mutate(Center.Age = as.numeric(scale(YOB, scale = FALSE)))

td.old <- td %>%
filter(Age.Group == "Old") %>%
mutate(Center.Age = as.numeric(scale(YOB, scale = FALSE)))

6 ©Matt Hunt Gardner

	Doing It All Again, But tidy
	The Pipe %>%
	Tibbles
	Getting a glimpse()
	Manipulating data with dplyr

