
Crosstabs: Counts, Proportions, and More
from Doing LVC with R*

Matt Hunt Gardner

2022-09-27

Table of contents
Token Counts . 1
Summary Statistics for Continous Variables . 11

Dealing with Decimals . 12
More Summary Statistics for Continous Variables . 15
Position functions with summarize() . 16

Count functions with summarize() . 17
Logical functions . 18

Proportions . 18
It took me two years to figure out how to do cross-tabs in R the way that Goldvarb does cross-tabs. Below
I show you how to build cross-tabs from scratch.

Token Counts
A good starting point is the function table(). This function returns token numbers.

Get the data first

If you don’t have the td data loaded in R, go back to Doing it all again, but tidya and run the code.
ahttps://lingmethodshub.github.io/content/R/lvc_r/050_lvcr.html

Get the number of tokens by level of Dep.Var
table(td$Dep.Var)

Deletion Realized
386 803

This tells you that there are 386 Deletion tokens and 803 not deleted, or Realized tokens. If you add
another factor group like Age.Group, you get the number of tokens for each level of Dep.Var for each level
of that additional factor group. These two factor groups are returned as the rows and then columns in the
table.

Get the number of tokens by level of Dep.Var
and Age.Group
table(td$Dep.Var, td$Age.Group)

*https://lingmethodshub.github.io/content/R/lvc_r/

1

https://lingmethodshub.github.io/content/R/lvc_r/050_lvcr.html
https://lingmethodshub.github.io/content/R/lvc_r/

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Old Middle Young
Deletion 67 125 194
Realized 134 235 434

If you add one more factor group, Sex, it divides the data in what R calls “pages”. The first page is the
number of tokens for each level of Dep.Var by each level of Age.Group for female data (Sex = F), and then
the same for the male data (Sex = M).

Get the number of tokens by Dep.Var, Sex, and
Age.Group
table(td$Dep.Var, td$Age.Group, td$Sex)

, , = F

Old Middle Young
Deletion 43 73 72
Realized 107 165 199

, , = M

Old Middle Young
Deletion 24 52 122
Realized 27 70 235

You can add the option deparse.level = 2 to include the names of the columns in the table.

Get the number of tokens by Dep.Var, Sex, and
Age.Group
table(td$Dep.Var, td$Age.Group, td$Sex, deparse.level = 2)

, , td$Sex = F

td$Age.Group
td$Dep.Var Old Middle Young

Deletion 43 73 72
Realized 107 165 199

, , td$Sex = M

td$Age.Group
td$Dep.Var Old Middle Young

Deletion 24 52 122
Realized 27 70 235

If you wrap the table() function in the addmargins() function you get the sums of each row and column,
and another page for both the male and the female data together.

Get the number of tokens by Dep.Var, Sex, and
Age.Group, with column, row and page totals
addmargins(table(td$Dep.Var, td$Age.Group, td$Sex,

deparse.level = 2))

, , td$Sex = F

2 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

td$Age.Group
td$Dep.Var Old Middle Young Sum

Deletion 43 73 72 188
Realized 107 165 199 471
Sum 150 238 271 659

, , td$Sex = M

td$Age.Group
td$Dep.Var Old Middle Young Sum

Deletion 24 52 122 198
Realized 27 70 235 332
Sum 51 122 357 530

, , td$Sex = Sum

td$Age.Group
td$Dep.Var Old Middle Young Sum

Deletion 67 125 194 386
Realized 134 235 434 803
Sum 201 360 628 1189

If you change the order of factor groups you include in the table() function you can change which factors
are rows, which are columns, and which are pages. You can also keep adding factors as additional pages.
The order is always: rows, columns, page 1, page 2, etc.

Get the number of tokens by Age.Group,
Education, Sex, and Dep.Var, with row, column,
and page totals
addmargins(table(td$Age.Group, td$Education, td$Sex,

td$Dep.Var, deparse.level = 2))

, , td$Sex = F, td$Dep.Var = Deletion

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 2 41 0 43
Middle 68 5 0 73
Young 20 0 52 72
Sum 90 46 52 188

, , td$Sex = M, td$Dep.Var = Deletion

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 0 24 0 24
Middle 16 36 0 52
Young 48 24 50 122
Sum 64 84 50 198

, , td$Sex = Sum, td$Dep.Var = Deletion

td$Education

3 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

td$Age.Group Educated Not Educated Student Sum
Old 2 65 0 67
Middle 84 41 0 125
Young 68 24 102 194
Sum 154 130 102 386

, , td$Sex = F, td$Dep.Var = Realized

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 30 77 0 107
Middle 153 12 0 165
Young 52 0 147 199
Sum 235 89 147 471

, , td$Sex = M, td$Dep.Var = Realized

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 0 27 0 27
Middle 30 40 0 70
Young 77 31 127 235
Sum 107 98 127 332

, , td$Sex = Sum, td$Dep.Var = Realized

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 30 104 0 134
Middle 183 52 0 235
Young 129 31 274 434
Sum 342 187 274 803

, , td$Sex = F, td$Dep.Var = Sum

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 32 118 0 150
Middle 221 17 0 238
Young 72 0 199 271
Sum 325 135 199 659

, , td$Sex = M, td$Dep.Var = Sum

td$Education
td$Age.Group Educated Not Educated Student Sum

Old 0 51 0 51
Middle 46 76 0 122
Young 125 55 177 357
Sum 171 182 177 530

, , td$Sex = Sum, td$Dep.Var = Sum

td$Education

4 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

td$Age.Group Educated Not Educated Student Sum
Old 32 169 0 201
Middle 267 93 0 360
Young 197 55 376 628
Sum 496 317 376 1189

The above function produces 9 “pages”, one for each combination of Sex (two levels) and Dep.Var (two
levels), plus the sum of each (one additional level each), and the sum for both. With more than three factor
groups like this it is very useful to have the column names included in the output. Scroll to the sixth page,
for example (the one that begins , , td$Sex = Sum, td$Dep.Var = Realized). It shows the number
of tokens by Age.Group and Education (the first two factor groups in the function), when Sex equals Sum
(e.g., M and F combined) and Dep.Var equals Realized.
One advantage of doing cross-tabs in R, rather than Goldvarb, is that you can simultaneously cross more
than two factor groups at once. But, the presentation of these factors in pages may not be the most useful.
The function ftable() in the package vcd presents the cross-tab in a more condensed format. The last
factor group in the table() function will be the variable for the columns in ftable(), so you always want
to make that the dependent variable. Below is the ftable() for the cross-tab of Age.Group, Education,
Sex, and Dep.Var. You can see, for example, that there are 52 Deletion tokens from young, student, female
speakers and that there are no tokens from old, educated men.

Get the number of tokens by Age.Group,
Education, Sex, and Dep.Var, with row, column
and page totals, presented in a flattened table
library(vcd)
ftable(table(td$Age.Group, td$Education, tdSex, tdDep.Var))

Deletion Realized

Old Educated F 2 30
M 0 0

Not Educated F 41 77
M 24 27

Student F 0 0
M 0 0

Middle Educated F 68 153
M 16 30

Not Educated F 5 12
M 36 40

Student F 0 0
M 0 0

Young Educated F 20 52
M 48 77

Not Educated F 0 0
M 24 31

Student F 52 147
M 50 127

Do the same but include the margin values
ftable(addmargins(table(td$Age.Group, td$Education,

tdSex, tdDep.Var)))

Deletion Realized Sum

Old Educated F 2 30 32

5 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

M 0 0 0
Sum 2 30 32

Not Educated F 41 77 118
M 24 27 51
Sum 65 104 169

Student F 0 0 0
M 0 0 0
Sum 0 0 0

Sum F 43 107 150
M 24 27 51
Sum 67 134 201

Middle Educated F 68 153 221
M 16 30 46
Sum 84 183 267

Not Educated F 5 12 17
M 36 40 76
Sum 41 52 93

Student F 0 0 0
M 0 0 0
Sum 0 0 0

Sum F 73 165 238
M 52 70 122
Sum 125 235 360

Young Educated F 20 52 72
M 48 77 125
Sum 68 129 197

Not Educated F 0 0 0
M 24 31 55
Sum 24 31 55

Student F 52 147 199
M 50 127 177
Sum 102 274 376

Sum F 72 199 271
M 122 235 357
Sum 194 434 628

Sum Educated F 90 235 325
M 64 107 171
Sum 154 342 496

Not Educated F 46 89 135
M 84 98 182
Sum 130 187 317

Student F 52 147 199
M 50 127 177
Sum 102 274 376

Sum F 188 471 659
M 198 332 530
Sum 386 803 1189

Of course we can use the pipe %>% to make things a bit easier

Get the number of tokens by Age.Group,
Education, Sex, and Dep.Var, with row, column
and page totals, presented in a flattened table

6 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

table(td$Age.Group, td$Education, tdSex, tdDep.Var) %>%
addmargins() %>%
ftable()

Deletion Realized Sum

Old Educated F 2 30 32
M 0 0 0
Sum 2 30 32

Not Educated F 41 77 118
M 24 27 51
Sum 65 104 169

Student F 0 0 0
M 0 0 0
Sum 0 0 0

Sum F 43 107 150
M 24 27 51
Sum 67 134 201

Middle Educated F 68 153 221
M 16 30 46
Sum 84 183 267

Not Educated F 5 12 17
M 36 40 76
Sum 41 52 93

Student F 0 0 0
M 0 0 0
Sum 0 0 0

Sum F 73 165 238
M 52 70 122
Sum 125 235 360

Young Educated F 20 52 72
M 48 77 125
Sum 68 129 197

Not Educated F 0 0 0
M 24 31 55
Sum 24 31 55

Student F 52 147 199
M 50 127 177
Sum 102 274 376

Sum F 72 199 271
M 122 235 357
Sum 194 434 628

Sum Educated F 90 235 325
M 64 107 171
Sum 154 342 496

Not Educated F 46 89 135
M 84 98 182
Sum 130 187 317

Student F 52 147 199
M 50 127 177
Sum 102 274 376

Sum F 188 471 659
M 198 332 530

7 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Sum 386 803 1189
Another tidy way to find out the number of tokens by the different levels of a factor group is using the
group_by() and tally() functions. First, we specify how to group the data, i.e., what combination of
factors we want to investigate. In this case, we want the number of tokens for every combination of
Age.Group, Education, Sex and Dep.Var. Next we use the tally() function to provide the token counts
for each of those combinations. The results are very similar to those produced by ftable(table()).

Group data by Age, Education, and Sex then
tally each group
td %>%

group_by(Age.Group, Education, Sex, Dep.Var) %>%
tally()

A tibble: 24 x 5
Groups: Age.Group, Education, Sex [12]

Age.Group Education Sex Dep.Var n
<fct> <fct> <fct> <fct> <int>

1 Old Educated F Deletion 2
2 Old Educated F Realized 30
3 Old Not Educated F Deletion 41
4 Old Not Educated F Realized 77
5 Old Not Educated M Deletion 24
6 Old Not Educated M Realized 27
7 Middle Educated F Deletion 68
8 Middle Educated F Realized 153
9 Middle Educated M Deletion 16

10 Middle Educated M Realized 30
... with 14 more rows
i Use `print(n = ...)` to see more rows
As the results of tally() is a tibble, only the first 10 rows will be printed. To print all the rows add
print(n=Inf) at the end.

Group data by Age, Education, and Sex, tally
each group, then print all rows
td %>%

group_by(Age.Group, Education, Sex, Dep.Var) %>%
tally() %>%
print(n = Inf)

A tibble: 24 x 5
Groups: Age.Group, Education, Sex [12]

Age.Group Education Sex Dep.Var n
<fct> <fct> <fct> <fct> <int>

1 Old Educated F Deletion 2
2 Old Educated F Realized 30
3 Old Not Educated F Deletion 41
4 Old Not Educated F Realized 77
5 Old Not Educated M Deletion 24
6 Old Not Educated M Realized 27
7 Middle Educated F Deletion 68
8 Middle Educated F Realized 153
9 Middle Educated M Deletion 16

10 Middle Educated M Realized 30

8 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

11 Middle Not Educated F Deletion 5
12 Middle Not Educated F Realized 12
13 Middle Not Educated M Deletion 36
14 Middle Not Educated M Realized 40
15 Young Educated F Deletion 20
16 Young Educated F Realized 52
17 Young Educated M Deletion 48
18 Young Educated M Realized 77
19 Young Not Educated M Deletion 24
20 Young Not Educated M Realized 31
21 Young Student F Deletion 52
22 Young Student F Realized 147
23 Young Student M Deletion 50
24 Young Student M Realized 127
The above code gives us the number of Realized and Deletion tokens for each combination of Age.Group,
Education, and Sex. What if we want the total number of tokens for each combination, rather than the
number of each level of Dep.Var. In this case, you can just drop Dep.Var from the group_by() function.

Get total number of tokens per group by
removing Dep.Var
td %>%

group_by(Age.Group, Education, Sex) %>%
tally() %>%
print(n = Inf)

A tibble: 12 x 4
Groups: Age.Group, Education [7]

Age.Group Education Sex n
<fct> <fct> <fct> <int>

1 Old Educated F 32
2 Old Not Educated F 118
3 Old Not Educated M 51
4 Middle Educated F 221
5 Middle Educated M 46
6 Middle Not Educated F 17
7 Middle Not Educated M 76
8 Young Educated F 72
9 Young Educated M 125

10 Young Not Educated M 55
11 Young Student F 199
12 Young Student M 177
We know now that there are 32 tokens from Old, Educated, F (female) speakers. The previous tally()
shows us that 2 of the tokens are Deletion and 30 are of Realized.
An alternative to tally() is the much more flexible summarize() function.1 With this function you can
apply a summary statistic function to each combination of the grouping variables. If no summary statistic
function is created, the a tibble of the combination of the groups is produced.

Create a tibble of all combinations of
Age.Group, Education, and Sex (for which there
are rows of data)

1summarise() and summarize() are synonyms.

9 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

td %>%
group_by(Age.Group, Education, Sex) %>%
summarize()

A tibble: 12 x 3
Groups: Age.Group, Education [7]

Age.Group Education Sex
<fct> <fct> <fct>

1 Old Educated F
2 Old Not Educated F
3 Old Not Educated M
4 Middle Educated F
5 Middle Educated M
6 Middle Not Educated F
7 Middle Not Educated M
8 Young Educated F
9 Young Educated M

10 Young Not Educated M
11 Young Student F
12 Young Student M
To get the count, or number of rows, of each combination, we create a new column in the tibble that is the
output of summarize() and assign to it the value of the count function n()

Create a tibble of grouping variables, then add
a new column 'Tokens' with the value of the
count function
td %>%

group_by(Age.Group, Education, Sex, Dep.Var) %>%
summarize(Tokens = n()) %>%
print(n = Inf)

A tibble: 24 x 5
Groups: Age.Group, Education, Sex [12]

Age.Group Education Sex Dep.Var Tokens
<fct> <fct> <fct> <fct> <int>

1 Old Educated F Deletion 2
2 Old Educated F Realized 30
3 Old Not Educated F Deletion 41
4 Old Not Educated F Realized 77
5 Old Not Educated M Deletion 24
6 Old Not Educated M Realized 27
7 Middle Educated F Deletion 68
8 Middle Educated F Realized 153
9 Middle Educated M Deletion 16

10 Middle Educated M Realized 30
11 Middle Not Educated F Deletion 5
12 Middle Not Educated F Realized 12
13 Middle Not Educated M Deletion 36
14 Middle Not Educated M Realized 40
15 Young Educated F Deletion 20
16 Young Educated F Realized 52
17 Young Educated M Deletion 48
18 Young Educated M Realized 77

10 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

19 Young Not Educated M Deletion 24
20 Young Not Educated M Realized 31
21 Young Student F Deletion 52
22 Young Student F Realized 147
23 Young Student M Deletion 50
24 Young Student M Realized 127
The summarize() function can be used with a number of summary statistic functions, including, but not
limited to, the following:

Type Some Useful Functions
Center mean(), median()
Spread sd(), IQR()
Range min(), max()
Position first(), last(), nth()
Count n(), n_distinct()
Logical any(), all()

Summary Statistics for Continous Variables
This seems like an appropriate place to describe how to summarize values that are continous, like YOB.
Normally in variationist sociolinguistics we are very concerned with frequency and proportion of usage,
and we will explore how to generate those statistics in the following section. Here, however, let’s explore
the functions available to use inside summarize(). These functions can be used on their own, also. For
example, the first two, mean() and median() provide the arithmetic mean (basically the average) of a set of
numbers while the median() provides the exact middle number of a set of values organized from smallest
to largest (if there are an even number of values, median() returns the halfway point between the two
middle numbers).

Get mean year of birth
mean(td$YOB)

[1] 1969.447

Get median year of birth
median(td$YOB)

[1] 1984
We already know that the mean year of birth for the td data set is 1969.447. You can also see that the
middle number of all years of birth organized from oldest to youngest is 1984. If we wanted to find the
mean or median year of birth for either just male or just female speakers, we have two options. We can
use the base filter technique, or we can use the tidy method to group the data and summarize it.

Get mean year of birth of just female speakers
mean(td$YOB[td$Sex == "F"])

[1] 1963.487

Get mean year of birth of just male speaker
mean(td$YOB[td$Sex == "M"])

[1] 1976.857

11 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Get mean year of birth for each level of Sex
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB))

A tibble: 2 x 2
Sex Mean.YOB
<fct> <dbl>

1 F 1963.
2 M 1977.

Dealing with Decimals
Tibbles are intended to be succinct and concise, so they provide very few values after the decimal place by
default. If you require more decimal values, the easiest (trust me) thing to do is to convert the tibble into
a data frame.

Get mean year of birth by Sex, converted to
data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB)) %>%
as.data.frame()

Sex Mean.YOB
1 F 1963.487
2 M 1976.857
data frames will display whole numbers, and numbers with decimals up to the total number of digits set by
options() function. Keep in mind, though, that changing this value changes the global options for R. An
alternative is to use the format() function.

Change number of significant digits displayed
to 6
options(digits = 6)
Get mean year of birth by sex, converted to
data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB)) %>%
as.data.frame()

Sex Mean.YOB
1 F 1963.49
2 M 1976.86

Change number of significant digits displayed
to 10
options(digits = 10)
Get mean year of birth by sex, converted to
data frame
td %>%

group_by(Sex) %>%

12 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

summarize(Mean.YOB = mean(YOB)) %>%
as.data.frame()

Sex Mean.YOB
1 F 1963.487102
2 M 1976.856604

Change number of significant digits displayed
to 3
options(digits = 3)
Get mean year of birth by sex, converted to
data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB)) %>%
as.data.frame()

Sex Mean.YOB
1 F 1963
2 M 1977

Change number of significant digits displayed
to 3
options(digits = 3)
Get mean year of birth by sex, converted to
data frame but showing 10 significant digits
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB)) %>%
as.data.frame() %>%
format(digits = 10)

Sex Mean.YOB
1 F 1963.487102
2 M 1976.856604
For very large numbers R will often display values in exponential notation. We can alter this by setting the
value of scipen inside the option() function. Again, though, remember that this is a global change for
your whole R session. For scipen positive values increase the likelihood of using real numbers, negative
values increase the likelihood of using exponential notation. To ensure printouts are always real numbers,
set scipen to 9999 (this is the default). To ensure printouts are always exponential notation, set scipen to
-9999. To demonstrate, below we multiply mean YOB by 10000.

Change number of significant digits displayed
to 6, alter the likelihood of use of real
number rather than scientific notation by 0
options(digits = 6, scipen = 0)
Get mean year of birth by sex multiplied by
100000, converted to data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB) * 1e+05) %>%
as.data.frame()

13 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Sex Mean.YOB
1 F 196348710
2 M 197685660
With scipen set to 0, we still get real numbers as the values Mean.YOB are not too big. To ensure we have
real numbers, though, we change the scipen value.

Change number of significant digits displayed
to 6, alter the likelihood of use of real
number rather than scientific notation by 9999
options(digits = 6, scipen = 9999)
Get mean year of birth by sex multiplied by
100000, converted to data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB) * 10000) %>%
as.data.frame()

Sex Mean.YOB
1 F 19634871
2 M 19768566
If, instead we prefer exponential notation, we use the maximum negative scipen value, -9999/

Change number of significant digits displayed
to 6, alter the likelihood of use of real
number rather than scientific notation by -9999
options(digits = 6, scipen = -9999)
Get mean year of birth by sex multiplied by
100000, converted to data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB) * 10000) %>%
as.data.frame()

Sex Mean.YOB
1 F 1.96349e+07
2 M 1.97686e+07
Above, the value 1.96349e+07 means 1.96349 × 107. The easiest way to calculate this is to simply move
the decimal places 7 spaces to the right (as the exponent is positive), which gives 19634900. Notice some
precision is lost because our number of digits is only 6.

Change number of significant digits displayed
to 10, alter the likelihood of use of real
number rather than scientific notation by -9999
options(digits = 1e+01, scipen = -9.999e+03)
Get mean year of birth by sex multiplied by
100000, converted to data frame
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB) * 1e+04) %>%
as.data.frame()

Sex Mean.YOB

14 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

1 F 1.963487102e+07
2 M 1.976856604e+07
Now, with more digits we have more precision; 1.963487102 × 107 = 19634671.02. If the expo-
nential values are negative, move the decimal place to the left. For example, 1.963487102 × 10−7 =
0.0000001963467102.
Similarly, we can set whether or not we want scientific notation using the format() function. The
scientific option can be either TRUE or FALSE, or a value like scipen.

Change number of significant digits displayed
to 3, alter the likelihood of use of real
number rather than scientific notation by 9999
options(digits = 3e+00, scipen = 9.999e+03)
Get mean year of birth by sex multiplied by
100000, converted to data frame, digits
formatted to 10 significant digits, and
exponential notation
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB) * 1e+04) %>%
as.data.frame() %>%
format(digits = 1e+01, scientific = TRUE)

Sex Mean.YOB
1 F 1.963487102e+07
2 M 1.976856604e+07

More Summary Statistics for Continous Variables
The other summary statistics for continuous variables include spread functions and the range functions.
Some spread functions are sd(), which returns the standard deviation; and IQR() which returns the in-
terquartile range.2 Some range functions include: min(), which returns the lowest value; max(), which
returns the highest value. To find the maximum spread (from highest to lowest), we can either subtract
the min() value from the max() value, or employ the diff() function plus the range() function (which
produces a vector containing the minimum and maximum values).
We can include these functions inside the same summarize() function as we used above.

Get mean, standard deviation, interquartile
range, minimum value, maximum value, and range
of values (twice) for year of birth
td %>%

group_by(Sex) %>%
summarize(Mean.YOB = mean(YOB), SD.YOB = sd(YOB),

IQR.YOB = IQR(YOB), Min.YOB = min(YOB), Max.YOB = max(YOB),
Range = max(YOB) - min(YOB), Range2 = diff(range(YOB)))

A tibble: 2 x 8
Sex Mean.YOB SD.YOB IQR.YOB Min.YOB Max.YOB Range Range2
<fct> <dbl> <dbl> <dbl> <int> <int> <int> <int>
2If we order the data from lowest to highest values, 50% of the data will be less than the mean, and 50% of the data will be higher

than the mean. The mean is also called the 2nd quartile. The first quartile is halfway between the mean and the lowest value in
the data. The third quartile is halfway betwen the mean and the highest value in the data. The interquartile range is the difference
between the 3rd quartile and the 1st quartile and represents the spread of the middle 50% of the data.

15 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

1 F 1963. 26.5 45 1915 1999 84 84
2 M 1977. 19.6 33 1921 1994 73 73
Based on these values, we can make the following statements:

• Among females in the (t, d) data, the average or mean year of birth is 1963 ± 26.5 years.
• The oldest female speakers was born in 1915, and the youngest female speaker was born in 1999.
• Fifty-percent of women were born in the 45 years centered around 1963.
• The female data represents 84 years of apparent time3.

Position functions with summarize()
The position functions first(), last(), and nth() also work on the data created by group_by() and
summarize(). first() returns the first value, last() returns the last value, and nth() returns the value
after a specific number of rows.

Get first six rows of just Sex and Dep.Var
columns of td
td %>%

select(Sex, Dep.Var) %>%
head()

Sex Dep.Var
1 F Realized
2 F Deletion
3 F Deletion
4 F Deletion
5 M Realized
6 M Deletion

Get last six rows of just Sex and Dep.Var
columns of td
td %>%

select(Sex, Dep.Var) %>%
tail()

Sex Dep.Var
1184 F Realized
1185 F Realized
1186 F Realized
1187 M Realized
1188 M Deletion
1189 M Realized
Above we use the select() function to choose just the Sex and Dep.Var columns and run the head()
and tail() functions in order to see the first and last six values for both in the data. We do this just for
comparisons sake. Now, lets use the position functions an compare them to our results.

Get first, last, second, and second to last
value of Dep.Var by Sex
td %>%

3https://en.wikipedia.org/wiki/Apparent-time_hypothesis

16 ©Matt Hunt Gardner

https://en.wikipedia.org/wiki/Apparent-time_hypothesis

Doing LVC with R: Crosstabs: Counts, Proportions, and More

group_by(Sex) %>%
summarize(First = first(Dep.Var), Last = last(Dep.Var),

Second = nth(Dep.Var, 2), Second.Last = nth(Dep.Var,
-2))

A tibble: 2 x 5
Sex First Last Second Second.Last
<fct> <fct> <fct> <fct> <fct>

1 F Realized Realized Deletion Realized
2 M Realized Realized Deletion Deletion
Compare the male values with those from the head() and tail() functions above. The first (row 5) is
Realized, the last (row 1198) is Realized. The second (row 6) is Deletion, and the second to last (row
1188) is also Deletion.

Count functions with summarize()

We’ve already looked at n() above, but there is also the n_distinct() function, which reports the number
of distinct values. We can use this, for example, to find the number of speakers in each social category. To
do this using base R filtering is a lot more complicated to code (so much so its not even worth doing). One
example is shown below. It would need to be repeated for every combination of sex, education, and age
group.

Example using base R filtering, finding the
number of unique speakers who are female,
educated, and middle aged

n_distinct(td$Speaker[td$Sex == "F" & td$Education ==
"Educated" & td$Age.Group == "Middle"])

[1] 12

Much easier way to find number of unique
speakers for every combination of Sex,
Education, and Age. Group

td %>%
group_by(Sex, Education, Age.Group) %>%
summarize(Speaker.Count = n_distinct(Speaker)) %>%
print(n = Inf)

A tibble: 12 x 4
Groups: Sex, Education [6]

Sex Education Age.Group Speaker.Count
<fct> <fct> <fct> <int>

1 F Educated Old 1
2 F Educated Middle 12
3 F Educated Young 3
4 F Not Educated Old 6
5 F Not Educated Middle 1
6 F Student Young 11
7 M Educated Middle 3
8 M Educated Young 6
9 M Not Educated Old 5

17 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

10 M Not Educated Middle 7
11 M Not Educated Young 3
12 M Student Young 8
You’ll notice that there are is no value for older educated males. This is because there are no speakers in
the data from this group.

Logical functions
The two logical functions only work on data that is logical (i.e., is TRUE or FALSE). any() returns the answer
to the question “Are any values TRUE?” and all() returns the answer to the question “Are all values TRUE?”.
There are no logical values in the td data set, so lets make some as an example.

Create a new column in which all values are
FALSE
td$Logical.Test <- FALSE
Modify the new column so for any tokens from
young female speakers are coded as TRUE instead
of FALSE
td$Logical.Test[td$Sex == "F" & td$Age.Group == "Young"] <- TRUE

Get logical value (TRUE or FALSE) of whether
any tokens and all tokens of Logical.Test are
TRUE, by Sex
td %>%

group_by(Sex) %>%
summarize(Any.True = any(Logical.Test), All.True = all(Logical.Test))

A tibble: 2 x 3
Sex Any.True All.True
<fct> <lgl> <lgl>

1 F TRUE FALSE
2 M FALSE FALSE
Above we created a logical column in which only tokens from young females are set to TRUE. The any()
function returns TRUE for F but not for M because there is at least one TRUE value in the female data.
Conversely, the all() function returns FALSE for F because not all of the female values are TRUE.

Proportions
Finding out the proportion of a variant is just like finding out the number of tokens. Using the base R
methods, you simply wrap the table() function in a prop.table() function.

Proportion of each level of Dep.Var
prop.table(table(td$Dep.Var))

Deletion Realized
0.325 0.675

Usually proportions are expressed as hundredths. To force R to express numbers in hundredths, you can
use the options() function to set the number of significant digits displayed to two.

Display values rounded to nearest hundredth.
options(digits = 2)

18 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Proportion of each level of Dep.Var
prop.table(table(td$Dep.Var))

Deletion Realized
0.32 0.68

In the example above there is only one dimension: Dep.Var. The prop.table() outer function takes the
table() inner function and divides the number of tokens in each cell by some total (e.g. denominator). The
default denominator is the total number of tokens in the whole table. Because, in the example above, the
total number of tokens in the one dimension table is the same as the total number of Dep.Var tokens, you
don’t need to specify anything further. In the example below, however, there are two dimensions: Dep.Var
and Age.Group. If you do not specify which total to use as a denominator, the proportions expressed use
the total number of tokens in the table as the denominator.4 If you want to know the percentage of deletion
tokens that come from Young, Middle and Old speakers, you set margin = 1, meaning that you want the
total (e.g., denominator) to be the sum of the tokens for the first variable in the function, (e.g., rows total).
If instead you want to know the percentage of Young tokens (or Middle tokens, or Old tokens) that are
Deletion, and the percentage that are Realized, you set margin = 2, or rather set the denominator to the
sum of the second factor group in the function (e.g., column total). This follows R’s global pattern of rows,
columns, page 1, page 2, etc. You can verify this by adding up the proportions in each table below. In the
first table all of the proportions add up to 1. In the second table, on the other hand, the proportions add
up to 1 going across the rows. In the third table they add up to 1 going down the columns.

Proportion of each level of Dep.Var and
Age.Group (all values sum to 1)
prop.table(table(td$Dep.Var, td$Age.Group))

Old Middle Young
Deletion 0.056 0.105 0.163
Realized 0.113 0.198 0.365

Proportion of each level of Age.Group for each
level of Dep.Var (each row sums to 1)
prop.table(table(td$Dep.Var, td$Age.Group), margin = 1)

Old Middle Young
Deletion 0.17 0.32 0.50
Realized 0.17 0.29 0.54

Proportion of each level of Dep.Var for each
level of Age.Group (each column sums to 1)
prop.table(table(td$Dep.Var, td$Age.Group), margin = 2)

Old Middle Young
Deletion 0.33 0.35 0.31
Realized 0.67 0.65 0.69

In order to achieve the three-dimension cross-tabs you get from Goldvarb, with one dependent variable and
two independent variables, you must set up the prop.table(table()) function with your variables in the
following order: independent variable 1, independent variable 2, dependent variable. You must also specify a
particular margin, e.g., denominator. In a Goldvarb-style cross-tab each cell is the number of tokens for
one level of the dependent variable (e.g., the application or non-application value) divided by the total

4You’ll notice that the values in this table are expressed in thousandths instead of hundredths. This is because the proportion for
Deletion and Old tokens requires three decimal places to have two meaningful digits.

19 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

number of tokens for that cell. In an R proportion table the total number of tokens per cell is the number
of tokens for the value of the row and the column at the same time — not the row total, or the column
total. To specify that you want the denominator to be the cell total you set margin = c(1,2), where the c()
concatenating function specifies both row (1) and column (2). The result is a separate page for proportions
of each level of Dep.Var. The proportions for the corresponding cells in each page add up to 1.

Proportion of each level of Dep.Var for each
level of Age.Group and Sex (all corresponding
cells sum to 1)
prop.table(table(td$Age.Group, td$Sex, td$Dep.Var),

margin = c(1, 2))

, , = Deletion

F M
Old 0.29 0.47
Middle 0.31 0.43
Young 0.27 0.34

, , = Realized

F M
Old 0.71 0.53
Middle 0.69 0.57
Young 0.73 0.66

You can keep adding factor groups to your proportion table, but you must do two things. You must keep
the dependent variable, Dep.Var, as the rightmost variable in the function, and you must include all the
other variables in the margin specification. For example, below you add Education as the third variable,
and add 3 to the margin specification. There will be a separate page for each combination of the levels of
Education and Dep.Var.

Proportion of each level of Dep.Var for each
level of Age.Group, Sex and Education
prop.table(table(td$Age.Group, td$Sex, td$Education,

td$Dep.Var), margin = c(1, 2, 3))

, , = Educated, = Deletion

F M
Old 0.062
Middle 0.308 0.348
Young 0.278 0.384

, , = Not Educated, = Deletion

F M
Old 0.347 0.471
Middle 0.294 0.474
Young 0.436

20 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

, , = Student, = Deletion

F M
Old
Middle
Young 0.261 0.282

, , = Educated, = Realized

F M
Old 0.938
Middle 0.692 0.652
Young 0.722 0.616

, , = Not Educated, = Realized

F M
Old 0.653 0.529
Middle 0.706 0.526
Young 0.564

, , = Student, = Realized

F M
Old
Middle
Young 0.739 0.718

Again, you can make these larger tables easier to read by flattening the pages using ftable(). Here the
NaN means there is no data in the cell.

Proportion of each level of Dep.Var for each
level of Age.Group, Sex and Education,
presented as a flattened table. Here the `NaN'
just means there is no data in the cell.
library(vcd)
ftable(prop.table(table(td$Age.Group, td$Sex, td$Education,

td$Dep.Var), margin = c(1, 2, 3)))

Deletion Realized

Old F Educated 0.062 0.938
Not Educated 0.347 0.653
Student NaN NaN

M Educated NaN NaN
Not Educated 0.471 0.529
Student NaN NaN

Middle F Educated 0.308 0.692
Not Educated 0.294 0.706

21 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Student NaN NaN
M Educated 0.348 0.652

Not Educated 0.474 0.526
Student NaN NaN

Young F Educated 0.278 0.722
Not Educated NaN NaN
Student 0.261 0.739

M Educated 0.384 0.616
Not Educated 0.436 0.564
Student 0.282 0.718

There are a number of functions specifically designed to create cross-tables that are somewhat easier to use,
but can be somewhat less flexible. Generally, they are most useful for one independent variable and one
dependent variable. I tend to use the CrossTable() function from the gmodels package frequently.

Load gmodels
library(gmodels)

Generate cross tab of Sex and Dep.Var in which
the row proportions are displayed, but table
proportions, column proportions, and
contribution to chi-square are suppressed, with
0 decimal values displayed, and missing
combinations included.
CrossTable(tdSex, tdDep.Var, prop.r = TRUE, prop.c = FALSE,

prop.t = FALSE, prop.chisq = FALSE, format = "SPSS",
digits = 0, missing.include = TRUE)

Cell Contents
|-------------------------|
| Count |
Row Percent

Total Observations in Table: 1189

| td$Dep.Var
td$Sex | Deletion | Realized | Row Total |

-------------|-----------|-----------|-----------|
F | 188 | 471 | 659 |

| 29% | 71% | 55% |
-------------|-----------|-----------|-----------|

M | 198 | 332 | 530 |
| 37% | 63% | 45% |

-------------|-----------|-----------|-----------|
Column Total	386	803	1189

For the CrossTable() function you can set the denominator to row total with the option prop.r=TRUE. If
instead you wanted to the proportion by column, you set prop.c = TRUE, and if you want the proportion
across the entire table you can set prop.t = TRUE. You can actually set all of these to TRUE to get all
three. There are other values that can be generated, including values for calculating chi-square (see the

22 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

CrossTable() documentation here5). The above code includes the minimal number of options needed to
generate the type of cross-table we generally want.
To produce proportions using the tidy method, we combine the group_by() and summarize() functions
with the mutate() discussed in an earlier section6.

Generate tibble of combination of Sex and
Dep.Var with token counts and proportion of
each level of Dep.Var by Sex
td %>%

group_by(Sex, Dep.Var) %>%
summarize(Count = n()) %>%
mutate(Prop = Count/sum(Count))

A tibble: 4 x 4
Groups: Sex [2]

Sex Dep.Var Count Prop
<fct> <fct> <int> <dbl>

1 F Deletion 188 0.285
2 F Realized 471 0.715
3 M Deletion 198 0.374
4 M Realized 332 0.626
After grouping the data by Sex and Dep.Var, we create a new column Count with values equal to the
number of tokens for the particular combination, then we create a new column using mutate() and a math
equation to generate proportions. It is important here that your dependent variable Dep.Var is the last
grouping variable. If we change the order, instead of generating the proportion of Realized and Deletion
tokens, it will instead return the percentage of Realized tokens that are M and the percentage that are F,
which is the incorrect denominator for our purposes.

Generate tibble of combination of Dep.Var and
Sex with token counts and proportion of each
level of Sex by Dep.Var
td %>%

group_by(Dep.Var, Sex) %>%
summarize(Count = n()) %>%
mutate(Prop = Count/sum(Count))

A tibble: 4 x 4
Groups: Dep.Var [2]

Dep.Var Sex Count Prop
<fct> <fct> <int> <dbl>

1 Deletion F 188 0.487
2 Deletion M 198 0.513
3 Realized F 471 0.587
4 Realized M 332 0.413
Unlike the CrossTable() function, we can include multiple independent variables. To include every com-
bination (including those for which there are no tokens), we can add .drop = FALSE to the group_by()
function.

5https://www.rdocumentation.org/packages/gmodels/versions/2.18.1.1/topics/CrossTable
6https://lingmethodshub.github.io/content/R/lvc_r/040_lvcr.html

23 ©Matt Hunt Gardner

https://www.rdocumentation.org/packages/gmodels/versions/2.18.1.1/topics/CrossTable
https://lingmethodshub.github.io/content/R/lvc_r/040_lvcr.html

Doing LVC with R: Crosstabs: Counts, Proportions, and More

Generate tibble of combination of Sex,
Edcuation, Age.Group, and Dep.Var with all
combinations included, with token counts and
proportion of each level of Dep.Var by each
combination of other variables
td %>%

group_by(Sex, Education, Age.Group, Dep.Var, .drop = FALSE) %>%
summarize(Count = n()) %>%
mutate(Prop = Count/sum(Count)) %>%
print(n = Inf)

A tibble: 36 x 6
Groups: Sex, Education, Age.Group [18]

Sex Education Age.Group Dep.Var Count Prop
<fct> <fct> <fct> <fct> <int> <dbl>

1 F Educated Old Deletion 2 0.0625
2 F Educated Old Realized 30 0.938
3 F Educated Middle Deletion 68 0.308
4 F Educated Middle Realized 153 0.692
5 F Educated Young Deletion 20 0.278
6 F Educated Young Realized 52 0.722
7 F Not Educated Old Deletion 41 0.347
8 F Not Educated Old Realized 77 0.653
9 F Not Educated Middle Deletion 5 0.294

10 F Not Educated Middle Realized 12 0.706
11 F Not Educated Young Deletion 0 NaN
12 F Not Educated Young Realized 0 NaN
13 F Student Old Deletion 0 NaN
14 F Student Old Realized 0 NaN
15 F Student Middle Deletion 0 NaN
16 F Student Middle Realized 0 NaN
17 F Student Young Deletion 52 0.261
18 F Student Young Realized 147 0.739
19 M Educated Old Deletion 0 NaN
20 M Educated Old Realized 0 NaN
21 M Educated Middle Deletion 16 0.348
22 M Educated Middle Realized 30 0.652
23 M Educated Young Deletion 48 0.384
24 M Educated Young Realized 77 0.616
25 M Not Educated Old Deletion 24 0.471
26 M Not Educated Old Realized 27 0.529
27 M Not Educated Middle Deletion 36 0.474
28 M Not Educated Middle Realized 40 0.526
29 M Not Educated Young Deletion 24 0.436
30 M Not Educated Young Realized 31 0.564
31 M Student Old Deletion 0 NaN
32 M Student Old Realized 0 NaN
33 M Student Middle Deletion 0 NaN
34 M Student Middle Realized 0 NaN
35 M Student Young Deletion 50 0.282
36 M Student Young Realized 127 0.718
Notice that for the missing combinations the count() is 0, and the percentage is NaN, which stands for “not
a number”, the result of trying to divide 0 by something. NaN is similar to NA, but NA stands for “no data”,

24 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

and is used for empty cells.

Assign the tibble generated in the previous
code to an object called results
results <- td %>%

group_by(Sex, Education, Age.Group, Dep.Var, .drop = FALSE) %>%
summarize(Count = n()) %>%
mutate(Prop = Count/sum(Count))

Recode all NaN in results to 0
results$Prop[is.nan(results$Prop)] <- 0
Print results
print(results, n = Inf)

A tibble: 36 x 6
Groups: Sex, Education, Age.Group [18]

Sex Education Age.Group Dep.Var Count Prop
<fct> <fct> <fct> <fct> <int> <dbl>

1 F Educated Old Deletion 2 0.0625
2 F Educated Old Realized 30 0.938
3 F Educated Middle Deletion 68 0.308
4 F Educated Middle Realized 153 0.692
5 F Educated Young Deletion 20 0.278
6 F Educated Young Realized 52 0.722
7 F Not Educated Old Deletion 41 0.347
8 F Not Educated Old Realized 77 0.653
9 F Not Educated Middle Deletion 5 0.294

10 F Not Educated Middle Realized 12 0.706
11 F Not Educated Young Deletion 0 0
12 F Not Educated Young Realized 0 0
13 F Student Old Deletion 0 0
14 F Student Old Realized 0 0
15 F Student Middle Deletion 0 0
16 F Student Middle Realized 0 0
17 F Student Young Deletion 52 0.261
18 F Student Young Realized 147 0.739
19 M Educated Old Deletion 0 0
20 M Educated Old Realized 0 0
21 M Educated Middle Deletion 16 0.348
22 M Educated Middle Realized 30 0.652
23 M Educated Young Deletion 48 0.384
24 M Educated Young Realized 77 0.616
25 M Not Educated Old Deletion 24 0.471
26 M Not Educated Old Realized 27 0.529
27 M Not Educated Middle Deletion 36 0.474
28 M Not Educated Middle Realized 40 0.526
29 M Not Educated Young Deletion 24 0.436
30 M Not Educated Young Realized 31 0.564
31 M Student Old Deletion 0 0
32 M Student Old Realized 0 0
33 M Student Middle Deletion 0 0
34 M Student Middle Realized 0 0
35 M Student Young Deletion 50 0.282
36 M Student Young Realized 127 0.718

25 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

The easiest way to convert NaN (or Na) to 0 is to assign the above to a variable, then replace NaN with 0
using the function is.nan(). If there were NA values, you can do the same thing as above, but replace
is.nan() with is.na()
When we report proportions in sociolinguistics manuscripts, we often only report the proportion of one
level of the dependent variable (called the application value). To only display one of the two levels of
Dep.Var — for instance, if we just want to show the rates of Deletion, which we might decide is our
application value — we can use the subset() function.

Create the results object, but subsetted to
include only Deletion tokens
results <- td %>%

group_by(Sex, Education, Age.Group, Dep.Var, .drop = FALSE) %>%
summarize(Count = n()) %>%
mutate(Prop = Count/sum(Count)) %>%
subset(Dep.Var == "Deletion")

Recode NaN to 0
results$Prop[is.nan(results$Prop)] <- 0
Print results
print(results, n = Inf)

A tibble: 18 x 6
Groups: Sex, Education, Age.Group [18]

Sex Education Age.Group Dep.Var Count Prop
<fct> <fct> <fct> <fct> <int> <dbl>

1 F Educated Old Deletion 2 0.0625
2 F Educated Middle Deletion 68 0.308
3 F Educated Young Deletion 20 0.278
4 F Not Educated Old Deletion 41 0.347
5 F Not Educated Middle Deletion 5 0.294
6 F Not Educated Young Deletion 0 0
7 F Student Old Deletion 0 0
8 F Student Middle Deletion 0 0
9 F Student Young Deletion 52 0.261

10 M Educated Old Deletion 0 0
11 M Educated Middle Deletion 16 0.348
12 M Educated Young Deletion 48 0.384
13 M Not Educated Old Deletion 24 0.471
14 M Not Educated Middle Deletion 36 0.474
15 M Not Educated Young Deletion 24 0.436
16 M Student Old Deletion 0 0
17 M Student Middle Deletion 0 0
18 M Student Young Deletion 50 0.282
Finally, if we also want to add the total number of tokens per category (something we usually report along-
side the application value) we can add another column using mutate(). Also, if we want the percentage
instead of proportion, we can add 100 * to the proportion equation (as percentage is proportion ×100)

Generate results object with percentage instead
of proportion and a column with total tokens
per combination.
results <- td %>%

group_by(Sex, Education, Age.Group, Dep.Var, .drop = FALSE) %>%

26 ©Matt Hunt Gardner

Doing LVC with R: Crosstabs: Counts, Proportions, and More

summarize(Count = n()) %>%
mutate(Percentage = 100 * Count/sum(Count), Total.N = sum(Count)) %>%
subset(Dep.Var == "Deletion")

Recode NaN to 0
results$Percentage[is.nan(results$Percentage)] <- 0
Print results
print(results, n = Inf)

A tibble: 18 x 7
Groups: Sex, Education, Age.Group [18]

Sex Education Age.Group Dep.Var Count Percentage Total.N
<fct> <fct> <fct> <fct> <int> <dbl> <int>

1 F Educated Old Deletion 2 6.25 32
2 F Educated Middle Deletion 68 30.8 221
3 F Educated Young Deletion 20 27.8 72
4 F Not Educated Old Deletion 41 34.7 118
5 F Not Educated Middle Deletion 5 29.4 17
6 F Not Educated Young Deletion 0 0 0
7 F Student Old Deletion 0 0 0
8 F Student Middle Deletion 0 0 0
9 F Student Young Deletion 52 26.1 199

10 M Educated Old Deletion 0 0 0
11 M Educated Middle Deletion 16 34.8 46
12 M Educated Young Deletion 48 38.4 125
13 M Not Educated Old Deletion 24 47.1 51
14 M Not Educated Middle Deletion 36 47.4 76
15 M Not Educated Young Deletion 24 43.6 55
16 M Student Old Deletion 0 0 0
17 M Student Middle Deletion 0 0 0
18 M Student Young Deletion 50 28.2 177
The above results show that there are 32 tokens from old, educated females, 2 of which (or 6.25%) are
Deletion.

27 ©Matt Hunt Gardner

	Token Counts
	Summary Statistics for Continous Variables
	Dealing with Decimals

	More Summary Statistics for Continous Variables
	Position functions with summarize()
	Count functions with summarize()
	Logical functions

	Proportions

